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It is known that it is difficult to obtain a reliable prediction of the fracture condi- 
tions for a fibrous composite (FC) on the basis of tests. Thus, for instance, it is impos- 
sible to indicate the section of the FC specimen over which a macrocrack will proceed up to 
the state nearest to fracture [i, 2] from an analysis of acoustic emission (AE) signals. In 
this connection, electronic computer modeling of the cumulative damage process in an FC ac- 
quires special urgency as does the prediction of the site and time of macrocrack development 
in the specimen from its results. 

Two fundamental assumptions [I, 2] underlie modeling of the FC fracture process [3]: 
the principles of exhaustion of the deformation capacity of the host material under load and 
the correlation during the cumulative damage process. 

Exhaustion of the host deformation capacity can occur with and without crushing of the 
composite fibers. These two limit cases are apparently the foundation for the introduction 
of FC fracture classification in [2]: bulk type fracture associated with accumulation of a 
large number of fiber discontinuities, and dynamical for which the macrocrack is formed be- 
cause of the discontinuity of one fiber independently of the other fiber discontinuities. 

Bulk type FC fracture was assumed during modeling [3], while exhaustion of the host de- 
formation capacity was realized by localization of the plastic deformation in the neighbor- 
hood of the site of the fiber discontinuity. As regards the principle of correlation during 
bulk fracture, then the distinct mutual influence detected in test [i] for the development 
of the crack formation process in one domain of the specimen on an analogous process in the 
nearest neighborhood should be emphasized. 

The purpose of this investigation is to model the fiber crushing process in a loaded FC 
specimen on an electronic computer and to predict the dangerous section of the specimen from 
the data of the numerical experiment. 

Analogously to [3] we consider a cylindrical FC specimen of length L bonded by unidirec- 
tional fibers of length L and diameter df with hexagonal stacking. The spacing between the 

nearest adjacent fibers is I = 6]/5 d: ~ (vf is the volume fraction of fibers in the FC). 

The FC specimen is stretched by a constant load o 0 along the fiber direction at a constant 
temperature T. The bulk fracture of the FC under the conditions mentioned is determined by 
the accumulation of thermally activated fiber discontinuities as well as by plastic deforma- 
tion and splitting of the host. 

The tensile stress in the fibers and host equals, respectively 

% % 
~71 u: ~- ETrj:TJE.:' ~7,~ = ~m "P" E:u.:/Em 

(v m = 1 - vf, Ef and E m are the Young's moduli of the fiber and host). 

We assume that the process of fiber crushing is treelike [4] and we examine it under the 
following assumptions [3]. 
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i. The mean lifetime of a fiber segment of length x is 

/ _t_t, x > l o ,  C . . . . .  t exp - - -  , 

~ oo , x <~ lo, 

(1 )  

where U0, 7f is the activation energy and the activation volume of the fiber material, k is 
the Boltzmann constant, ~0 = i0-12 sec; a 0 is the mean dimension of a structural element of 
the fiber material, p is a parameter, and Z0 is the effective length of the fiber. The se- 
lection of (i) is based on the representation of the "scale" effect for fibers. 

2. The probability that a fiber discontinuity will occur at a distance $ from any of 
the ends of a segment of length x is 

r ([) d[ = ~c~2!~ ~Tg; -7" (2 )  

The expression (2) describes the correlation between fiber discontinuity sites since it 
takes account of the drop in the tensile stress at the site of the discontinuity, and the 
parameter D ~ i. 

3. Fiber segments have a double numbering. They are characterized by the number i of 
the fiber and by the number j of the segment of this fiber measured from one of its ends. 
By using a random number generator realizing a sampling of random lifetimes from an exponen- 
tial distribution F(t) = 1 - exp [-t/~(x)], an actual lifetime is ascribed to each fiber seg- 
ment. 

Modeling the process of bulk FC fracture starts with the assumption that there are N = 
61 entire fibers of length L at the initial time t = 0. The main step in the calculational 
experiment includes selection of the fiber segment with least actual lifetime, playing the 
act of its discontinuity in conformity with the distribution (2) on a segment of length 
and x - $, calculation of their mean lifetimes T(~) and ~(x - $) according to (i) and, final- 
ly, calculation of their actual lifetimes tij , Tij+1. Important in the modeling of the pro- 

cess is the treatment of the neighbors of the chosen fiber, where those segments of the near- 
est fibers that contain a projection of the point of discontinuity of the cracked fiber under 
the condition of the influence of a crack in the host thereon are considered overstressed. 
Using the representation [5] we assume that the presence of a stress concentrator at the fiber 
results in an increase in of thereon. We emphasize that (2) remains valid here for this over- 
stressed segment. In conformity with the described physical model, new lifetimes are calcu- 
lated for the adjacent segments. Some of them can randomly turn out to be less here than the 
lifetime of the chosen fiber, which is considered as consistent fiber discontinuities. 

The energy 

5E~ ~= E(~) - -  E(x - -  D - -  E(~), 

9 ~ 

�9 1 �9 G,,~ =- E . j ( t  + ~,~) i s  where E ( x ) = ~ j o z ( z ) d z ;  o ( z ) ~ o . t  ~ - - c o s h  [ K T J / c o s h  K ~  ; K = S E /  1__.]/2, , 
0 

l i b e r a t e d  f o r  a d i s c o n t i n u i t y  o f  a f i b e r  o f  l e n g t h  x a t  a d i s t a n c e  [ f r o m  one  o f  t h e  e n d s .  
T h i s  e n e r g y  i s  e x p e n d e d  i n  t h e  f o r m a t i o n  o f  a c r a c k  o p e n i n g  i n  t h e  h o s t  and  p l a s t i c  d e f o r m a -  
t i o n  t h e r e i n  n e a r  t h e  s i t e  o f  t h e  d i s c o n t i n u i t y  [ 6 ] .  

At present there is no analytic solution of the problem of deformation of a host with a 
brittle fiber sealed therein during its discontinuity in an exact formulation (see [7], p. 
67). However, we use estimates constructed on the basis of the energy conservation law which 
can approximately be written in our case as 

6E(x) := K(.~) + ~(:~ --  ~) + II,,~ + . j .  

Here K(~)=-~-- 1~1~jd ~ , K(x--~) ~ )()~(%')d~' are the kinetic energies of segments of 
0 
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the chosen fiber, 01 and 02 are the segment displacement velocities, Hm = 2~Fm(rc 2 - rfZ), 

Hf = ~ Ffdf 2 are surface energies in the host and fiber, respectively, and Fm, Ff are the 

specific surface energies of the host and fiber. There are still no well-founded estimates 
of the magnitude of the energy 6E I dissipated in the formation of new surfaces during crack- 
ing, and the energy expended in plastic deformation of the host material 6E 2 = 6E - 6E1. 
Consequently, we introduce the free parameter ~ = 6EI/~E to obtain a qualitatively true esti- 
mate. 

We assume that the crack being formed has the shape of a disc whose radius is r c = 

~6Ez/(2~F m) + df2/4. We also ass~e that the nearest fibers "shield" the stress in the host 
because of the opening of the crack and consequently r c does not exceed ~. We introduce the 
radius of crack influence r~, and we estimate its magnitude by using the method of sections 
[7]: r~ = (i + 2/v 2) x r c. Fiber overload in our model corresponds to replacement of the 

('Yl) parameter C by Ce=C exp ~ T  in (i) according to the formulas 

~2 
a~ for i 2 

~2 = ~1 - -  ~/ - ~ - K l ( l  ~- 2 r c ) ( I - -  f o r  
9ojd~ 

~3 -~ 0 for r ~ <  1 

r~ >~l, 

r~ < l <~ r~, 

(3) 

(K I = 20m/~7~) ; formulas (3) are obtained by the method of sections. 

The energy residue 6E 2 = (i - ~)6E is expended in plastic deformation of the host near 
the site of the discontinuity. Analogously to [8], we assume that the governing equation 
for the host material is 

(~m, Ym are the shear stresses and strains in the host that occur during motion of the ends 
of the chosen fiber at the velocity 0). It is shown in [8] that if the velocity of boundary 
displacement of the half-space of the material (4) exceeds Iu*I that the solution of simple 
plastic wave type yields localization of the deformation Ym in the near-boundary layer of 
thickness $ called wave trapping. It is assumed here that for a certain magnitude of the 
plastic deformation ~m* the derivative is d~m/d~m = 0, and U* is related to ~m* by the formula 

~m 

U~ = -- ~ c(?~)dym [c(u is the speed of sound in the host as a function of the deformation 
0 

c(?~)= V ~/Pm, and Pm is the host density]. 

The governing equation 

is selected in [8] (f(z) = znl/(l + azn1+z), tom, Ym0, a, nz, Pz, im0 are constants of the 
host material). Numerical computations [8] showed that for n I = 0.02 and a = 0.005 for (5) 
the thickness 6 of the near-boundary layer containing strongly deformed material can be esti- 
mated as 

= 0 0~4c~/~m(u + ~*) (6) 

for 0 < 101 < co, where co = ~ m ;  Pz = 0.05; ~0m = 0.01. Data are presented in [8] about 
the constants for weak steel: c o = 200 m/sec, 0* = 30 m/sec, ~m0 = 10s sec-Z We obtain 
6 = 40 pm for the mentioned magnitudes of the parameters and 0 = i00 m/sec. We assume that 
(6) can be an estimate of the size of the domain of significant plastic deformations. It is 
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reasonable to assume that the deformation capacity of the host is exhausted in these domains, 
which results in a diminution of F m therein and an increase in r c and r~, and, taking (3) 
into account, to overload of the adjacent fibers. For simplicity in the computations we con- 
sider 0 ~ (6E2) I/2. 

In this model the FC specimen is divided into m layers perpendicular to the fiber direc- 
tion. For a fiber discontinuity in the k-th layer, a crack and a domain of large plastic de- 
formations in the form of a cylinder with axis on a given fiber of diameter 26 and height 
L/m are formed. If a crack is formed in the adjacent fiber, whose path passes through a do- 
main of large deformations, then its radius is calculated by starting from the assumption of 
an effective specific surface energy F e. If the crack lies completely in the domain of 
strongly deformed material F e = Fm/s. If the crack passes partially through the domain of 
strongly deformed material, then r e is calculated as the mean value of F m and Fm/s in pro- 
portion to the areas trapped by the crack in the strongly F l and weakly F 2 deformed host do- 

F m 
mains Fe =(FmF2~--- 7 F1)/(FI@ F2). 

The following values of the constants were chosen for the computations: Ef = 4"104 kgf/ 

mm 2, df = 0.14 mm, vf = 0.5, yf = 300 A 3 (boron fibers), F m = 1 kJ/m 2, E m = 7200 kgf/mm 2 

(aluminum host), L = 50 mm, o0 = 20 kgf/mm 2, ~0 = 3 mm, the parameter p = 1.5 in (i), a = 
0.5, s = 5, and the parameters ~ = 2 in (2). Since the set of constants from (5) for the 
chosen host is unknown to the authors, constants corresponding to steel [8] are taken for a 
qualitative estimate. 

The time dependence is shown in Fig. i: a is the rate of accumulation of single dis- 
continuities of fibers (curve i), consistent doubles (2), triples (3), and discontinuities 
of four and higher multiplicity (4), b is the power liberated for fiber discontinuities of 
appropriate multiplicity. It is seen that single discontinuities predominate in the early 
stage of the process of fiber discontinuity accumulation, they yield the main contribution 
to the liberated power W. The sequence of "inclusions" of the mechanisms of consistent dis- 
continuities of growing multiplicity as well as the trapping action of the mechanisms as the 
fiber discontinuity sites are exhausted is seen clearly. Special attention should be turned 
to the noticeable growth of the number of multiple discontinuities, substantially exceeding 
the quantity of single fiber discontinuities. According to [i, 2], the appearance of "con- 
sistent" discontinuities is the predecessor of specimen macrofracture. 

Let us now consider a more exact method of predicting the site for the occurrence of a 
mainline crack by starting from the assumption [i, 2] that macrofracture sets in in that 
section where energy liberation per unit time is greater. Under such an assumption it is 
important to calculate the probability of deviation of the magnitude of elastic energy being 
liberated for fiber discontinuities per unit time in a given specimen section from its mean 
value ("burst" of power). 

Let us introduce the random vector Wk(t ) whose components are random values of the power 
being liberated in a given section to a given time t. Following the ideas of the theory of 
probability of large variances [9], we introduce a sequence of n identical FC specimens and 
assume thatW1(t), Vf~(t) ..... VCn(t ) is a sequence of independent identically distributed random 
vectors of the power being liberated in this specimen. We consider the random vector dis- 
tribution 

W 1 ( t )  ~ -  W 2 ( t )  "q- . . .  -~- W n ( t )  - -  nMWh (t) 
Bn 

(B n is a sequence that tends to infinity more rapidly than n I/2 but more slowly than n). 
Let P(...) denote the probability of the event indicated in the parentheses, then according 
to [9], the following relationship is proved 

n {IWl(t) q -" ' -+-Wn( t ) - -nMWh(t )  
lira lira Z~- In P B~ 
6-~0 n ~  B n 

} i . --x <6 =_-~aijx~x 3, (7) 
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Fig. 1 

i.e., the distribution of normalized deviation of the sum of random vectors Wh(t ) from its 
mean value is a normal distribution given by the matrices aij , where aij is the inverse ma- 

trix of covariation for the random vectors mentioned, and MWk(t) is the mathematical expecta- 
tion of the vector Wh(t ). 

Let us determine the covariation matrix Aij as an empirical covariation matrix [i0]. 

An electronic computer calculation of the matrix aij = Aij -I of dimensionality m • m is dif- 

ficult for large dimensionalities m ~ i0 because of the incorrectness of its formation, con- 
sequently, we limit ourselves in the computations to selecting eight sections of the FC spec- 
imen. The maximal time of the cumulative damage process t m is given in the initial data and 
calculation of the matrix Aij is performed at the times t i = tm/10i (i = I, ..., i0). It 

should be recalled that (7) has been obtained to the accuracy of logarithmic equivalence [9]; 
consequently, only comparative estimates of the fracture probability are possible here for 
sections of an FC specimen. Calculations displayed the positive-definiteness of the matrix 
aij at the time ti, then the derivative of the right side of (7) with respect to the direction 

will characterize the degree of its growth. In our case it is important to determine the 
direction of the maximal change (7), i.e., the number of the FC specimen section for which 
the greatest probability of power "bursts" should be predicted. The direction cosines n i de- 
termine this direction. In particular for x i = x in (7) 

?n 

E aik 
h=l 

-'~ E aih 
--i h=l. 

and the absolute value of the derivative with respect to the given directions is 

' i=l \h=l 

Utilization of (8) and (9) to predict the probability of power "bursts" in this section 
is substantially a linear extrapolation on the basis of information accumulated in the ma- 
trix aij up to a given time. Computations showed that n i take on negative values at certain 

times. Hence, growth of the probability of power "bursts" in an appropriate FC specimen sec- 
tion follows. 

We present two examples of predicting the site of macrocrack appearance, associated with 
power "bursts" during fiber discontinuity. It is interesting to compare the results of pre- 
dictions in the case of taking account of the correlation between discontinuities in adjacent 
fibers (the parameter s = 5), along an individual fiber (the parameter p = 2) and in the ab- 
sence of correlation (s = i, p = i). The magnitude of the correlation of fiber discontinu- 
ities depends on the FC structure, it governs the tempo of cumulative damage and the locali- 
zation. 
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The diagram for predicting the site of a dangerous FC specimen section as a function of 
the dimensionless time t/T(L) is shown in Fig. 2 for the first computation (crosses) and for 
the second (dots). The ordinates of the points in the upper part of the diagram indicate 
the location of the dangerous FC specimen section while the corresponding ordinates of points 
in the lower part characterize the change in probability of power "bursts" being liberated 
in the specimen (n = 25 is taken in the computations). 

Let us now discuss the results obtained from the viewpoint of correlation of the fiber 
discontinuities. Computations showed that for selected values of the parameters the inten- 
sity of fiber crushing is higher in the first case than in the second. Thus, for instance, 
about i000 fiber discontinuities occur in the first computation in an identical time inter- 
val t m = 3.71T(L) and 180 in the second. Multiple "consistent" discontinuities are almost 
absent in the second, which would indeed result in a small number of fiber discontinuities, 
and also individual FC sections are almost not extracted from the viewpoint of the possibil- 
ity of a large "burst" of liberated elastic energy. At the same time, as follows from Fig. 
2, dangerous sections appeared in the first computations from the very beginning of the cumu- 
lative damage process, which is apparently a reflection of the presence of "consistent" fiber 
discontinuities. 

In conclusion, let us note that the proposed method for predicting FC fracture can be 
used to process experimental data obtained from an analysis of AE signals, say, during load- 
ing of real FC specimens since the AE signal amplitude is proportional to the magnitude of 
the fiber elastic energy being liberated during their discontinuity. The location of AE sig- 
nals permits distinguishing signals emitted from different sections of the specimen [i, 2] 
and computation of the empirical covariation matrix in values of random power vectors accord- 
ing to AE signals is the basis for estimating the prediction of a dangerous FC specimen sec- 
tion. 
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EFFECTIVE MODULI OF MULTIPHASE MATRIX COMPOSITES 

P. G. Krzhechkovskii UDC 5 3 9 . 3 : 6 7 8 . 0 6 7  

An extensive literature [1-3] addresses the question of calculating the effective char- 
acteristics of granulated matrix composites. However, these studies are generally concerned 
with two-phase composites, i.e., composites consisting of a matrix with inclusions having 
the same physical and geometric characteristics. The polydisperse model proposed by Hashin 
[4] has several important deficiencies which make it unsuitable for the design of actual com- 
posites: first of all, it is invalid for multiphase mixtures whose fractions differ in den- 
sity; second, it does not account for the geometry of the filler and the associated arrange- 
ment of the filler material in the matrix. 

In the present study, we construct a theory to calculate the effective moduli of partic- 
ulate matrix composites which is free of these problems. Our theory is in turn based on the 
theory of composite media proposed by Hill [5] and a generalized singular approximation of 
Shermergor's theory of random functions [i]. As an example of the use of the results obtained 
here, we examine the determination of the elastic moduli of polymer composites consisting of 
a polymer matrix and whole spherical inclusions introduced into the matrix. 

We will study a medium consisting of a homogeneous, isotropic matrix and spherical or 
ellipsoidal particles introduced into the matrix. The introduced particles are randomly lo- 
cated and oriented in the matrix. It is assumed that the filler consists of n - 1 isotropic 
phases differing in density and elastic characteristics and - in the case of spheres - in 
external diameter. Given the volume content of inclusions in the composite v s, it is as- 
sumed that we know the histogram describing the distribution of the phases with respect to 

�9 (i) their volume content in the filler v s . The latter quantity is determined by the vector 
function 

p = p (p~, p~ . . . . .  > - J ;  E p~ = ~ ( 1 )  
{ = l  

s o  t h a t  V s ( i )  = P i V s  - 

I f  t h e  c o m p o n e n t s  o f  t h e  f i l l e r  d i f f e r  i n  d e n s i t y ,  t h e n  t h e  b e l o w  v e c t o r - f u n c t i o n  d e -  
scribing the distribution of the densities of the phases is assigned 

P, = P, (9~ 1), 9~ 2) . . . . .  9~n-1))- ( 2 )  

I n  t h e  c a s e  when t h e  f i l l e r  i s  s p h e r i c a l ,  we s h o u l d  a l s o  know t h e  h i s t o g r a m  d e s c r i b i n g  t h e  
distribution of the fractions with respect to external diameter 

d = d(d~, d2, . . . ,  d,,_~). ( 3 )  

Equations (1)-(3) describe the structure and geometry of the filler of a particulate matrix 
composite. 

In accordance with the generalized singular approximation [i], the tensor of the effec- 
tive moduli of a multiphase nonmatrix mixture is found from one of the equivalent expressions 
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